Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antiviral Res ; 225: 105858, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490342

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne virus transmitted by Aedes mosquitoes. While there are no antiviral therapies currently available to treat CHIKV infections, several licensed oral drugs have shown significant anti-CHIKV activity in cells and in mouse models. However, the efficacy in mosquitoes has not yet been assessed. Such cross-species antiviral activity could be favorable, since virus inhibition in the mosquito vector might prevent further transmission to vertebrate hosts. Here, we explored the antiviral effect of ß-d-N4-hydroxycytidine (NHC, EIDD-1931), the active metabolite of molnupiravir, on CHIKV replication in Aedes aegypti mosquitoes. Antiviral assays in mosquito cells and in ex vivo cultured mosquito guts showed that NHC had significant antiviral activity against CHIKV. Exposure to a clinically relevant concentration of NHC did not affect Ae. aegypti lifespan when delivered via a bloodmeal, but it slightly reduced the number of eggs developed in the ovaries. When mosquitoes were exposed to a blood meal containing both CHIKV and NHC, the compound did not significantly reduce virus infection and dissemination in the mosquitoes. This was confirmed by modelling and could be explained by pharmacokinetic analysis, which revealed that by 6 h post-blood-feeding, 90% of NHC had been cleared from the mosquito bodies. Our data show that NHC inhibited CHIKV replication in mosquito cells and gut tissue, but not in vivo when mosquitoes were provided with a CHIKV-infectious bloodmeal spiked with NHC. The pipeline presented in this study offers a suitable approach to identify anti-arboviral drugs that may impede replication in mosquitoes.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Citidina/análogos & derivados , Animales , Ratones , Virus Chikungunya/fisiología , Replicación Viral , Antivirales
2.
Parasit Vectors ; 16(1): 373, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37858198

RESUMEN

Culex (Barraudius) modestus (Ficalbi 1889) are found in temperate regions across Europe, Asia, and Northern Africa. These mosquitoes thrive during the summer and prefer to breed in permanent vegetative habitats such as rice paddies and marshes. Culex modestus feed on a wide range of bird species but are highly attracted to humans, which makes them a potential 'bridge' vector for enzootic pathogens. There is compelling evidence that Culex modestus is an efficient vector for West Nile virus, potentially capable of causing epidemics in humans and other mammals. This species is also a likely vector for Usutu virus, avian malaria (Plasmodium spp.), and parasitic heartworms (Dirofilaria spp.). Culex modestus can be morphologically identified at the larval and adult stages, and a distinctive phenotype of this species is their ability to overwinter. Despite the widespread establishment of this mosquito species and their role as vectors for human pathogens, we lack sufficient knowledge on this species to implement and evaluate targeted vector control measures. Since Culex modestus can be considered a potential public health threat, there is a need for a better understanding of this mosquito species.


Asunto(s)
Culex , Culicidae , Virus del Nilo Occidental , Animales , Humanos , Mosquitos Vectores , Insectos Vectores , Fitomejoramiento , Mamíferos
3.
PLoS Negl Trop Dis ; 17(9): e0011649, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729233

RESUMEN

BACKGROUND: West Nile virus (WNV) and Usutu virus (USUV) are emerging arthropod-borne viruses (arboviruses) in Europe transmitted by Culex mosquitoes. In Belgium, it is currently unknown which Culex species are competent vectors for WNV or USUV and if these mosquitoes carry Wolbachia, an endosymbiotic bacterium that can block arbovirus transmission. The aims of our study were to measure the vector competence of Belgian Culex mosquitoes to WNV and USUV and determine if a naturally acquired Wolbachia infection can influence virus transmission. METHODOLOGY/PRINCIPAL FINDINGS: Female Culex mosquitoes were captured from urban and peri-urban sites in Leuven, Belgium and offered an infectious bloodmeal containing WNV lineage 2, USUV European (EU) lineage 3, or USUV African (AF) lineage 3. Blood-fed females were incubated for 14 days at 25°C after which the body, head, and saliva were collected to measure infection, dissemination, and transmission rates as well as transmission efficiency. Mosquito species were identified by qRT-PCR or Sanger sequencing, the presence of infectious virus in mosquitoes was confirmed by plaque assays, and viral genome copies were quantified by qRT-PCR. Culex pipiens pipiens were able to transmit WNV (4.3% transmission efficiency, n = 2/47) but not USUV (EU lineage: n = 0/56; AF lineage: n = 0/37). In contrast, Culex modestus were able to transmit USUV (AF lineage: 20% transmission efficiency, n = 1/5) but not WNV (n = 0/6). We found that the presence or absence of Wolbachia was species-dependent and did not associate with virus transmission. CONCLUSIONS/SIGNIFICANCE: This is the first report that Belgian Culex mosquitoes can transmit both WNV and USUV, forewarning the risk of human transmission. More research is needed to understand the potential influence of Wolbachia on arbovirus transmission in Culex modestus mosquitoes.


Asunto(s)
Arbovirus , Culex , Culicidae , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Femenino , Humanos , Virus del Nilo Occidental/genética , Bélgica , Flavivirus/genética , Mosquitos Vectores
4.
Microbiol Spectr ; : e0519522, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540021

RESUMEN

Aedes aegypti mosquitoes can transmit several arboviruses, including chikungunya virus (CHIKV), dengue virus (DENV), and Zika virus (ZIKV). When blood-feeding on a virus-infected human, the mosquito ingests the virus into the midgut (stomach), where it replicates and must overcome the midgut barrier to disseminate to other organs and ultimately be transmitted via the saliva. Current tools to study mosquito-borne viruses (MBVs) include 2D-cell culture systems and in vivo mosquito infection models, which offer great advantages, yet have some limitations. Here, we describe a long-term ex vivo culture of Ae. aegypti guts. Cultured guts were metabolically active for 7 d in a 96-well plate at 28°C and were permissive to ZIKV, DENV, Ross River virus, and CHIKV. Ex vivo guts from Culex pipiens mosquitoes were found to be permissive to Usutu virus. Immunofluorescence staining confirmed viral protein synthesis in CHIKV-infected guts of Ae. aegypti. Furthermore, fluorescence microscopy revealed replication and spread of a reporter DENV in specific regions of the midgut. In addition, two known antiviral molecules, ß-d-N4-hydroxycytidine and 7-deaza-2'-C-methyladenosine, were able to inhibit CHIKV and ZIKV replication, respectively, in the ex vivo model. Together, our results show that ex vivo guts can be efficiently infected with mosquito-borne alpha- and flaviviruses and employed to evaluate antiviral drugs. Furthermore, the setup can be extended to other mosquito species. Ex vivo gut cultures could thus be a new model to study MBVs, offering the advantage of reduced biosafety measures compared to infecting living mosquitoes. IMPORTANCE Mosquito-borne viruses (MBVs) are a significant global health threat since they can cause severe diseases in humans, such as hemorrhagic fever, encephalitis, and chronic arthritis. MBVs rely on the mosquito vector to infect new hosts and perpetuate virus transmission. No therapeutics are currently available. The study of arbovirus infection in the mosquito vector can greatly contribute to elucidating strategies for controlling arbovirus transmission. This work investigated the infection of guts from Aedes aegypti mosquitoes in an ex vivo platform. We found several MBVs capable of replicating in the gut tissue, including viruses of major health importance, such as dengue, chikungunya, and Zika viruses. In addition, antiviral compounds reduced arbovirus infection in the cultured gut tissue. Overall, the gut model emerges as a useful tool for diverse applications such as studying tissue-specific responses to virus infection and screening potential anti-arboviral molecules.

5.
Malar J ; 22(1): 249, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649032

RESUMEN

BACKGROUND: Spatial repellents that create airborne concentrations of an active ingredient (AI) within a space offer a scalable solution to further reduce transmission of malaria, by disrupting mosquito behaviours in ways that ultimately lead to reduced human-vector contact. Passive emanator spatial repellents can protect multiple people within the treated space and can last for multiple weeks without the need for daily user touchpoints, making them less intrusive interventions. They may be particularly advantageous in certain use cases where implementation of core tools may be constrained, such as in humanitarian emergencies and among mobile at-risk populations. The purpose of this study was to assess the efficacy of Mosquito Shield™ deployed in experimental huts against wild, free-flying, pyrethroid-resistant Anopheles arabiensis mosquitoes in Tanzania over 1 month. METHODS: The efficacy of Mosquito Shield™ transfluthrin spatial repellent in reducing mosquito lands and blood-feeding was evaluated using 24 huts: sixteen huts were allocated to Human Landing Catch (HLC) collections and eight huts to estimating blood-feeding. In both experiments, half of the huts received no intervention (control) while the remaining received the intervention randomly allocated to huts and remained fixed for the study duration. Outcomes measured were mosquito landings, blood-fed, resting and dead mosquitoes. Data were analysed by multilevel mixed effects regression with appropriate dispersion and link function accounting for volunteer, hut and day. RESULTS: Landing inhibition was estimated to be 70% (57-78%) [IRR 0.30 (95% CI 0.22-0.43); p < 0.0001] and blood-feeding inhibition was estimated to be 69% (56-79%) [IRR 0.31 (95% CI 0.21-0.44; p < 0.0001] There was no difference in the protective efficacy estimates of landing and blood-feeding inhibition [IRR 0.98 (95% CI 0.53-1.82; p = 0.958]. CONCLUSIONS: This study demonstrated that Mosquito Shield™ was efficacious against a wild pyrethroid-resistant strain of An. arabiensis mosquitoes in Tanzania for up to 1 month and could be used as a complementary or stand-alone tool where gaps in protection offered by core malaria vector control tools exist. HLC is a suitable technique for estimating bite reductions conferred by spatial repellents especially where direct blood-feeding measurements are not practical or are ethically limited.


Asunto(s)
Anopheles , Repelentes de Insectos , Malaria , Animales , Humanos , Tanzanía , Malaria/prevención & control , Mosquitos Vectores , Repelentes de Insectos/farmacología
6.
Insects ; 14(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37367368

RESUMEN

Pyriproxyfen (PPF) is an insect growth regulator used in the co-treatment of long-lasting insecticidal nets for its ability to sterilize female mosquitoes. To evaluate the efficacy of PPF-treated nets on mosquito reproductivity, most studies observe oviposition (egg-laying) rates in the laboratory. This technique has several technical disadvantages. Our study assessed if ovarial dissection could serve as an effective proxy for evaluating sterility in Anopheles gambiae mosquitoes. Blood-fed females were exposed to untreated or PPF-treated nets in cylinder assays and followed over several days to observe oviposition rates or egg development by dissection. For identifying PPF-exposed mosquitoes, both techniques demonstrated high sensitivity (oviposition: 99.1%; dissection: 100.0%), but for identifying non-exposed mosquitoes, specificity was significantly higher in the dissection group (52.5% vs. 18.9%). To assess whether dissection could be applied to nets treated with a pyrethroid or co-treated with a pyrethroid and PPF in tunnel tests, a blinded investigator performed dissections to predict the PPF exposure status across different treatment groups. The exposure status of dissected females was predicted with >90% accuracy. We report that dissection is a sensitive technique to assess sterility in female Anopheles gambiae mosquitoes and can be used as a predictor of PPF exposure.

7.
J Med Entomol ; 59(6): 2072-2079, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36130161

RESUMEN

The emergence of West Nile virus and Usutu virus in Europe poses a significant risk to public health. In the absence of efficient antiviral therapy or vaccine candidates, the only strategy to control these arboviruses is to target the Culex (Diptera: Culicidae) mosquito vector. However, the selection pressure caused by exposure to insecticides for vector control or agricultural pest control can lead to insecticide resistance, thereby reducing the efficacy of insecticide-based vector control interventions. In Culex mosquitoes, two of the most common amino acid substitutions associated with insecticide resistance are the kdr L1014F in voltage gated sodium channels and G119S in acetylcholinesterase. In this study, Culex pipiens biotype pipiens, Culex torrentium, and Culex modestus were sampled from 2019 to 2021 in three distinct environmental habitats (urban, peri-urban, and agricultural) in and around the city of Leuven, Belgium. Individual mosquitoes were screened for two mutations resulting in L1014F and G119S amino acid substitutions. Both mutations were observed in Cx. pipiens and Cx. modestus but not in Cx. torrentium mosquitoes across the four collection sites. Furthermore, multi-resistance or cross-resistance in Cx. pipiens could be a threat in these areas, as both mutations were observed at low frequencies. These results provide the first report of kdr L1014F and ace-1 G119S resistance mutations in Cx. pipiens and Cx. modestus mosquitoes from Belgium, highlighting the importance of mosquito surveillance to design effective arbovirus outbreak control strategies.


Asunto(s)
Culex , Culicidae , Insecticidas , Piretrinas , Animales , Piretrinas/farmacología , Bélgica , Organofosfatos/farmacología , Acetilcolinesterasa/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...